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Abstract—The stability of buoyancy-driven convection in a slot, slightly tilted with respect to the hori-
zontal, is investigated analytically on the basis of linear theory. For mathematical simplicity, the bound-
aries are assumed free and isothermal. It is shown that the Rayleigh number and the wave number at the
critical point have the same values as for an exactly horizontal slot, however, the predicted motion,
rather than being indeterminate, is one of longitudinal rolls with their axes aligned in the direction of the
mean flow. This is in contrast to the analogous problem of convection in a vertical slot in which the
secondary flow pattern is known to consist of transverse rolls, i.e. rolis with their axes normal to the mean
motion.
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NOMENCLATURE
amplification factor of the distur-
bance [see equation (4)];
heat capacity, evaluated at the tem-
perature T ;
depth of fluid layer;
thermal conductivity of fluid, evalu-
ated at the temperature Ty ;
pressure associated with the basic,
i.e. the undisturbed, flow;
P'/poUZ;
the temperatures at, respectively, the
lower and upper plane;
the arithmetic mean temperature
Ty + T)/2;
dimensionless Cartesian coordinates ;
dimensionless velocity components
in the x, y, z direction, respectively ;
characteristic velocity = ko/poc,.d;
the basic, ie. unperturbed, velocity
profile (dimensionless);
defined by equation (4);
Rayleigh number
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vk

(all physical properties evaluated at
temperature T,; g = gravitational
acceleration; & = coefficient of volu-
metric expansion).

Greek letters

’
’
-~

b

o, B, wave numbers in the x and z direction,
respectively [see equation (4)];

8, dimensionless temperature

(T — T)(T, — To);

B(n), defined by equation (4);

v, kinematic viscosity ;

2, fluid density;

a, Prandtl number c,pv/k (physical
properties evaluated at Tp);

o, angle of inclination of the slot with
respect to the horizontal ;

£,{, defined by equation (17).

Superscripts

primes denote dimensional quantities ;
denotes perturbation quantities.
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1. INTRODUCTION

As A RESULT of intensive study, considerable
progress has been achieved over the past
fifty years or so in understanding the subject of
buoyancy-driven convection in fluid layers
heated from below. For example, using a classical
linear stability analysis, it is possible to predict
the conditions for the onset of this convective
motion, as well as the characteristic scale of
the resulting flow pattern [1]. However, it is also
well-known that, in a layer of unbounded
horizontal extent, the flows that are possible
according to linear theory form an infinitely
degenerate set. Consequently, to obtain
theoretically the actual flow structure that is
realized physically in such a system, it is
necessary to take the non-linear effects into
account. Thus, it has been shown that con-
vection near the critical point will consist of
rolls if the fluid properties are temperature
independent according to the Boussinesq
approximation [2], or of hexagonal cells if
these properties vary substantially across the
fluid film [3, 4]. These theoretical predictions
are in good agreement with experimental ob-
servations [5-7].

In such cases, the inability of linear theory to
predict the flow pattern near the critical point
results from the absence of any preferred direc-
tion along the two horizontal planes that confine
an otherwise unbounded fluid layer. It might
be expected, therefore, that a linear analysis
would lead to a unique flow structure, or at
least to a degeneracy of lower order, for systems
in which such a complete isotropy did not exist.
Indeed, as shown recently by Davis [8] and by
Segel [9], when the fluid is contained in a rec-
tangular box, finite rolls with their axes parallel
to the shorter side are predicted on the basis
solely of a linear treatment. This is consistent
with Koschmieder’s observations [6] who found
that, near the critical point, the cell pattern that
emerges is strongly influenced by the geometry
of the lateral boundaries.

In this note we shall consider another example
on this subject in which a unique flow pattern
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results from linear theory. This is the problem
of buoyancy-driven convection in a fluid layer
bounded by two infinite parallel surfaces, tilted
at a small angle, ¢, with respect to the horizontal.
Here, a basic flow sets in which becomes
unstable whenever the temperature difference
between the two planes (with the bottom plane
kept warmer than the top) exceeds a certain
critical value. The similarity between this and
the usual case in which the planes are exactly
horizontal is of course evident ; in fact, both the
method of solution and some of the principal
results of the linear stability analysis are almost
identical. However, it will be seen that, although
the critical wave number will remain unaffected
by tilting the planes a small amount, a preferred
mode will emerge in the form of rolls having
their axes along the direction of the mean
motion. Hence, owing to the existence of this
basic flow which imparts a definite structure
to the undisturbed system, the degeneracy
usually associated with convection problems
of this type will be removed.

2. BASIC EQUATIONS AND SOLUTION OF THE
LINEAR STABILITY PROBLEM

The coordinate system is chosen as shown
in Fig. 1. Here, for the sake of mathematical
simplicity, the two boundary surfaces y' = 0,
d are taken to be free and maintained at constant
temperatures 7; and T, respectively. It is
convenient to introduce the non-dimensional
quantities

' ! ! k
wow) = (3-, YWYy ke
U, Uu,U, PoCpd
P tU T - T,
Py =75 =g
pOUc d Tl TD

To =Ty + To).

in which a prime refers to a dimensional variable
and a subscript 0 to a physical property evaluated
at the temperature T,,. Throughout this analysis
the familiar Boussinesq approximation [1] will



STABILITY OF BUOYANCY-DRIVEN CONVECTION IN A TILTED SLOT

be invoked, according to which the physical
properties are assumed to be temperature
independent except for the density appearing
in the buoyancy term.

Letting

0=1—2y, U = U(y),

it can easily be shown that the basic solution of
the appropriate governing equations reduces to

3 2
u = UQ) = Rsxn(p{—};———z—-f- 112}

v=w=0,

v =w=0, 0=1-2y N

P = P, + aRcos ¢(y — y%) = P(y),

where P, is a constant, R is the Rayleigh number
in terms of T} — T, and ¢ the Prandtl number.
This solution indicates that no matter how small
the inclined angle ¢, a shear-like flow in the
x-direction[u = U(y)] willalwaysbeestablished,
and that even in the presence of such a motion,
the transport of heat from the lower to the
upper plane will be due to conduction alone
provided no lateral boundaries exist.

Direction of gravity

FiG. 1. The coordinate system.

Following the usual approach of linear
stability theory, the following perturbation
quantities

U = U(y) + ﬁ(x, » Z), U= “x’y’ z’)5

w = W(x, y,2)

0=1-2y+08(x,y2, P=Py+pxy,z2)
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are next introduced into the basic equations.

Neglecting the non-linear terms and dropping

the carets yields
du
m + U(y) + vDU

= gROsing — % + oV

ox
50 U(y) = gRfcos ¢ -—% + oV
ow ow op )
5+ U(y)-&—-a e + oVw (2)
60 2
" U(y)—-— ~ 20 =V?0
é‘_ + .a_v_ + ?..W. = )
éx 8y dz
where
d , 0 0*  0?

D——a—; and « ——6;2-+5F+EE‘

Cross differentiating to eliminate the pressure
term and further differentiating in x and :z
to allow elimination of u and w, gives

dv

i 0
L O v Y Il v 2
6V* ath U(y)axVu+aDU
. 0% )
=aRsm(aa 5 — oR cos V30 (3)
where
VZ=V2_-Dp2

Equation (3) can be simplified by assuming
solutions of the form

v(x, y, 2, t) = V(y)exp {ilax + pz — ct)}
0(x, y, z, t) = O(y) exp {i(ax + Bz — ct)}

of which the real parts represent the actual
physical quantities. The wave numbers, & and B,

4
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are real and the growth rate, ¢, is generally
complex. In terms of (4), equation (3) becomes

(0(1)2 —a? — ) ~ia {[U(y) - g:l
x [D? —o® — B%] — D2U}>V(y)

= oRsin ¢ - 1aDO(y) + oR(x* + BHO(y)-cos ¢

[D? — o — B2 + ic — iaU(»)] 6(y)
+ 2V(y) = Q, 5)
with boundary conditions

V() =D*V() =6 =0 at y=0,1 (6)

Equation (5) is the familiar Orr—-Sommerfeld
equation coupled with the energy equation.
Recently, using the Galerkin method, Vest and
Arpaci [10] developed an approximate solution
to this system for the case ¢ = 90°, and their
results will be discussed later on. Here, since
the present study is restricted to small inclined
angles, @, the above equation will be solved by a
much simpler perturbation technique using sin ¢
as a small perturbation quantity. Thus, expand-
ing the solutions of equation (5) into the form:

{c,0, B, R, V(3), 000} = {co, %0, Bo» Ro» Vo(y¥) 0o(¥)}
+ {c1» a1, B R, Vi), 60(y)} sin g

+ {2, oz, B2, Ry, Vay), 0,(0)} sin @ + ...
M
we obtain for the zeroth order system
[o(D* — ad — B3) + ico] (D* — g —~ B7) Voly)
~ oRy(a5 + B3) Oo(y) = 0
(D* ~ o — B3 + ico)foly) + 2Vo3) = 0.
Here, as is well known [1], the principle of the

exchange of stabilities applies, hence ic, is real
and the marginal state is characterized by
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¢o = 0. The solution is readily available and is
given by

4
0o(y) = 3 sinmy,

Vo(y) = sin my, 33

277t

2
T
d%+ﬂ(2):?’

It should be pointed out that R, equals 277*/8
instead of 277*/4 as given in the standard
references, [ 1], because the Rayliegh number was
defined above in terms of half the temperature
difference between the two bounding surfaces,
y = 0, 1

Before solving the higher order equations, it
is first necessary to solve the homogeneous
adjoint problem. Applying a method similar to
that used in analogous studies [2], it can be
shown that the latter is given by

o(D* — of — B3)* V*(y) + 20%(») = 0
(D* — of — B3) 6%(y) — oRo(e5 + B3) V*(y) = 0

and that the boundary conditions are the same
as (6). Hence

V¥(y) = Voly) = sinny,

4

6
217}— d0y(y) = — o 9—;— sin 7y, 9)

0*0) = ~ 55

Substituting (7) into (5), we next obtain for the
first order equations

o(D* — o} — B3* V, — oRy(ad + B%) 6,

= Hooay + BoBy) a(D? — af — B Vo
— iagRoVoD?h + iagRoW(D?* — o — B3V,
—ic,(D?* ~ a3 — B3V, + iagoR,DO,
+ oR(0F + B3) 0o + 20Ro(a,00 + B1Bo) Oo,
(D* — a2 — B2) 0, + 2V, = iayRoh0y — ic,0,
+ a0 + B1Bo) 0o (10)
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where h(y) is given by
up) (¥ y .1 )
”‘-")“m-'(s 7 1)

Since the inhomogeneous part of equation (10)
must be orthogonal to the homogeneous adjoint
solution, the eigenvalue, R,, can be computed
as follows : Muitiplying the first equation in (10)
by V* and the second by 6*, summing and then
integrating from y = 0 to y = 1, yields

9% e (142
4 ! g}

Since R, is real, ¢; must be imaginary. Thus,
to this order, there is no oscillatory motion and
at the neutral state, ¢, and hence R, must equal
zero.

In view of (8) and the fact that ¢, and R, are
both equal to zero, equation (10) becomes

2\ 2
(132 - -’~‘~) ,0) ~

= ia —9—n~—-30'cosny-—ioz {gl——(y—» _y_
°2 °116 \3 2
+ﬂ—+l———2—>}sinny
3n* 12 32

+ 3n2o(a,0 + B Bo) sin my,

R1=

0910’)

(1)
2
(Dz - -’;-) 6,0) + 210)

97(2 y3 y2 1
= It 5~ (?‘2 3)sinmy

+(umo + Bibo) gpsinmy. (12)

Further elimination of 91 yields

-3)-2
= _1{8;7[7[}; —y? - -3—5(2 + a)} cos Ty

8128 1+ 0)(dy® -6y + l)smn:y} (13)
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where
1
Vi) = . Vi),

with boundary conditions
Vi=D?V, =0
973

4——-——~.~
D7, ==

at y=0,1

at y=0,

3

D471=—— at y=1

Equation (12) can be simplified by substituting

0,(y) = ioeB,(y) + 2109 + B1Bo) B, (y).
Then
72
(- Z)or - 27,
92 [y ¥y 1),
5 (? -5 + E)sm ny  (14)
and
(DZ - %) 8,) = —5sinmy.  (15)
Clearly,
8,0) = — -—8—- sinz
1 y - 9“4 y

As for Vi(y) and 8,(y), these had to be obtained
via a numerical solution of equations (13) and
(14) and are shown in Figs. 2 and 3. As required
by their governing equations and the associated
boundary conditions, both functions are anti-
symmetric with respect to the mid-point y = 0-5.
Also, it is apparent from Fig. 2 that, for Prandtl
numbers higher than 1-0, the magnitude of 2V,
is much less than that of the other term in the
right hand side of equation (14), hence one
would expect 8,(y) to be very insensitive to the
Prandtl number. This was borne out by the
numerical solutions to equation (14) which, for
o 2 1, could be represented to within a few
per cent by means of 8,(y) = —0:04 sin 2ny.
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Since the eigenvalue R, is zero at the neutral
state, it is necessary to compute R,. This can be
achieved from the solvability condition of the
second order equation. The latter is given by
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Since both V,(y) and 8,(y) are anti-symmetric
with respect to y = 05, k,(¢) must vanish. As
for k,(0), this was evaluated numerically at
different Prandtl numbers and is seen tabulated

, mY 277 5
oD —""i“ Vz"(f 16 92—-tx0 RoVDh Roh D "’““j‘ VI RoO'Dgl

2
+ iaof {O'R()Dgl - Rtho + 20' (DZ -— z{z—) V; -+ O'Roal} +

2

3n? 2
1——2——(,'2 sty + 5 (GR()él - O'Vo)

k4
- ?O'Roee + G'Rzgo + lal {Roh (D - "2") VO ROV()Dzk + GR()DGQ}

2
-+ C{ZG (D2 - %) Vo -+ O'Roeo},

2

where
f = 2&‘.1“0 '+' Zﬁxﬁo, g = 2“230 + a%

+ 28,8 + BL. (17

Again, multiplying the first equation in (16) by
V* and the second by #*, summing and inte-
grating, yields

R, = %Ro - %Rok1(") — 3iaglk,(0)
2
+ 3&2 ~10294 (l+1> (18)

where
1

ky(0) = gg {[Vlnzk —h (Dz - i‘;) 7,

o
- UDGl] V* — hale*}dy

+ GROQ,:l +8,0% }dy

in Table 1. Clearly, k,{(o) is everywhere negative,

At the neutral state, ¢, must be real. Since R,
is real, the real and imaginary parts of equation
(18) reduce, respectively, to

R, = 3Ry — afRok,(0) + 32 (19)
and
4
Cy = =332 1 g ———#oky(0) =

To this order then, no oscillatory motions are
possible at the neutral state. This is to be ex-
pected, since the absence of a preferred direction
for wave travel would suggest a stationary in-
stability.

Owing to the fact that k(o) is negative, it is
obvious that R, has a minimum value of 4R,
when both 2, and & vanish. With ¢, and £ both
zero, it is apparent from (8) and (17) that §, has
a value of n/,/2 and that B, is zero. Furthermore,
both V,(y) and 6,(y) are also zero. Thus,
summarizing the results obtained so far, we
have that, at the neutral state,
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FiG. 2. The function ¥,(y. 0).
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Fi1G. 3. The function 8,(y, o).
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a =, sin@ + Ofsin? @)
B = :/“3 + O(sin? @), ¢ = Ofsin® @)

_ 27t
)
V(y) = sinzmy + O(sin? ¢)

R (1 + $sin? @) + O(sin® @) (20)

4

) P sin ry + Of(sin? o).

It should be pointed out that if the Rayleigh
number were defined in terms of g cos ¢ rather
than g, then, to Ofsin? @), the critical Rayleigh
number given above would simply reduce to
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These theoretical conclusions are in a sense
rather similar to those arrived at by Gallagher
and Mercer {11] and by Deardorff [12] who
examined the problem of gravitational insta-
bility between horizontal plates in the presence
of a small shear flow, a problem which has many
points in common with that considered here.
These authors found that, as in the present case,
the critical Rayleigh number is smallest, and in
fact the same as that for pure convection without
shear, for longitudinal roll disturbances having
their axes aligned in the direction of the mean
flow (i.e. o, = 0). For the other disturbances
(g # 0), which generally lead to an oscillatory
instability, the critical Rayleigh number was

Table 1. Values of k(o)

c 01 10
—k(fa) 9081 0470

10*
0-419

20 10
0424 0417

R,. In addition, it is evident from (4) that this
neutral state corresponds to a longitudinal roll
solution, i.e. to rolls parallel to the x-axis.

3. DISCUSSION

According to the results presented above, the
Rayleigh number at the neutral state will have
a minimum value R, cos ¢ for a steady longi-
tudinal roll disturbance with its axis parallel to
the direction of the basic flow and with wave
number f equal to that of the corresponding
solution for an exactly horizontal layer. For
other disturbances, i.e. for oy # 0, the critical
Rayleigh number would be given by equation
(19) and oscillatory motions would again be
excluded. Thus, the linear stability theory,
when applied to the system depicted in Fig. 1,
leads to the very interesting prediction that, if
the Rayleigh number is slowly increased past
the critical point, the ensuing convective motion
for small values of ¢ will consist of steady
parallel rolls having a definite wave length and
with their axes in the x-direction.

found to increase sharply with increasing
Prandtl number. This last result differs from
that obtained here in two respects: first, it was
shown that the neutral state in the present
problem remains stationary for all disturbance
wave numbers. In addition, since the absolute
value of k,(o) approaches a constant as the
Prandtl number is increased, the critical Rayleigh
number as given by (19) will also increase to an
asymptotic value independent of ¢.
Undoubtedly, the problem bearing the closest
resemblance to that being considered here is that
of the stability of natural convection in a
vertical slot. As mentioned earlier, this was
studied by Vest and Arpaci [10] who found that,
owing to the absence of the term in equations
(3) proportional to cos ¢, Squire’s theorem
could be extended to this problem. Conse-
quently, the predicted flow pattern at the critical
point, which was shown to be stationary and to
be characterized by the Grashof rather than the
Rayleigh number as is the case here, was that of
transverse rolls, ie. rolls having their axes
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normal to the direction of the mean flow. This
last result, confirmed experimentally by Vest
and Arpaci, differs of course from that of the
present analysis in which longitudinal rolls were
predicted at the point of instability. Thus, it
would appear that, as ¢ is increased from 0 to
90°, a transition, perhaps even a sharp one,
should take place from stationary longitudinal
to stationary transverse rolls. It would be of
interest to try and observe this transition
experimentally.

The predicted flow pattern at the neutral
state also seems to depend on whether the in-
stability is primarily of hydrodynamic or of
thermal (convective) origin. For example, ther-
mal instability occurs when the layer is nearly
horizontal and is heated from below, as in the
present case. In contrast, when the layer is
vertical or is positioned at such an angle that it
corresponds to heating from above, then the
mechanism of instability is hydrodynamic, i.e. it
refers to the instability of two opposing con-
vective streams. Within the transition range of
the angle of inclination both mechanisms are
active and lead to a rather complicated de-
pendence of the critical Rayleigh number of ¢
and o which was recently determined by Birikh
et al. [13] for the special case of transverse rolls.

Before closing, it is perhaps worth remarking
that, although the present analysis has dealt for
reasons of mathematical simplicity only with the
case of free, isothermal boundaries along the two
planes, past experience would indicate that the
principal conclusions of this study would not
have been affected by the use of more realistic
boundary conditions. However, to show this
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rigorously would have required considerable
effort.
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STABILITE DE LA CONVECTION DUE A LA BRAVITE DANS UNE FENTE INCLINEE

Résumé—La stabilité de la convection due 4 la gravité dans une fente, légérement inclinée par rapport &
I’horizontale, est étudiée analytiquement sur la base de la théorie linéaire. Pour Ia simplicité mathématique,
on suppose que les frontiéres sont libres et isothermes. On montre que le nombre de Rayleigh et le nombre
d’onde au point critique ont les mémes valeurs que pour une fente exactement horizontale; cependant,
le mouvement prévu, au lieu d’étre indéterminé, consiste en rouleaux longitudinaux avec des axes alignés
dans la direction de I'écoulement moyen. Ceci est en opposition avec le probléme analogue de la convection
dans une fente verticale dans lequel on sait que 'écoulement secondaire consiste en rouleaux transversaux,
C’est-a-dire, en rouleaux avec des axes normaux 4 I’écoulement moyen.
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STABILITAT DER NATURLICHEN KONVEKTION IN EINEM GENEIGTEN SPALT

Zusammenfassung—Die Stabilitit der natiirlichen Konvektion in einem Spalt der leicht gegen die Hori-
zontale geneigt ist, wird analytisch auf Grund der Lineartheorie untersucht. Zur mathematischen Verein-
fachung sind die Berandungen als frei und isotherm angenommen. Es wird gezeigt, dass die Rayleigh-Zahi
und die Wellenzahl am kritischen Punkt die gleichen Werte geben, wie beim genau horizontalen Spalt,
doch ist die vorhergesagte Bewegung nicht unbestimmt, sondern eher eine Bewegung von Lingsrollen
deren Achsen in Richtung der mittleren Stromung ausgerichtet sind. Dies steht im Gegensatz zum analogen
Problem der Konvektion in senkrechten Spalten in welchen das Sekundarstrdmungsmuster aus Querrollen
besteht, d.h. Rollen deren Achsen normal zur mittleren Bewegungsrichtung stehen.

YCTONUUBOCTL TEHMEHUA 1TPYM HAJIMYUUK ECTECTBEHHOR
KOHBEKUUUN B HAKJOHHOR MEJN

Auporanua—Ha ocuoBe JuHeitHON TeOpUU AHATMTHUYECKM WHCCIERYeTcA yCTONYMBOCTL
TeYEHHWd TP HATUYMM eCTeCTBEHHOM KOHBeKLUN B ¢i1a60 HAKIOHEHHOH OTHOCHUTEIBHO
FOPU3OHTANM 1esn. Jlas IIPOCTOTH MAaTeMATU4YeCKMX pacdeToB NPHHATO, 4ro TBepinle
IPaHuls ABIAITCH (eCKOHEYHEIMU M u3oTepMuyeckumu. IToxasano, uto kpurepnit Peses u
BOJIHOBOE YUCHO B KPUTUUECKON TOUKe UMEIOT Te e 3HAYeHWHA, YTO U JJIA INeJH, pacmoJio-
FHEHHON CTPOTO TOPU3OHTANLHO, ONHAKO PACUETHOE TeueHue UMeeT BUJ HPOMOJBHHIX BAJOB
¢ OcsfAMM, OPHUEHTHUPOBAHHBIMK B HaIPABJIGHAN OCHOBHOIO TBUMECHUA. aToT pesyabTaT
NPOTUBONOMOMEH PEBYIBTATY, MOJYYeHHOMY TIPU PeIleHIM AHAJOTMYHON 33741 KOHBEKIMH
B BEPTHKAJIBHOMN NN, KOTJA BTOPUYHOE TedeHUe COCTOUT U3 NONEePeYHHX BAJIOB, T.e. BAJOB
C 0CAMHN, PACNOJOMKEHHBIMU NICPIEHANKYAAPHO OCHOBHOMY [ABUMEHHUIO,



